Jumat, 09 November 2018

CPU, BUS dan ALU

CPU, BUS dan ALU

1.      CPU ( Central Processing Unit )

A.     Pengertian CPU
Unit Pengolah Pusat (CPU) merujuk kepada perangkat keras komputer yang memahami dan melaksanakan perintah dan data dari perangkat lunak. Istilah lain, prosesor (pengolah data), sering digunakan untuk menyebut CPU. Adapun mikroprosesor adalah CPU yang diproduksi dalam sirkuit terpadu, seringkali dalam sebuah paket sirkuit terpadu-tunggal. Sejak pertengahan tahun 1970-an, mikroprosesor sirkuit terpadu-tunggal ini telah umum digunakan dan menjadi aspek penting dalam penerapan CPU.
B.      Cara kerja CPU
1.      Membaca, mengkodekan dan mengeksekusi instruksi program
2.      Mengirim data dari dan ke memori, serta dari dan ke bagian input/output.
3.      Merespon interupsi dari luar.
4.      Menyimpan data untuk sementara waktu menyediakan clock dan sinyal kontrol kepada               sistem.

C.    Fungsi CPU
CPU berfungsi seperti kalkulator, hanya saja CPU jauh lebih kuat daya pemrosesannya. Fungsi utama dari CPU adalah melakukan operasi aritmatika dan logika terhadap data yang diambil dari memori atau dari informasi yang dimasukkan melalui Source
D.    Komponen CPU
terbagi menjadi beberapa macam, yaitu :
1.      Unit Kontrol yang mampu mengatur jalannya program.
2.      Register merupakan alat penyimpanan kecil yang mempunyai kecepatan akses cukup tinggi, yang digunakan untuk menyimpan data dan/atau instruksi yang sedang diproses.
3.      ALU unit ini yang bertugas untuk melakukan operasi aritmetika dan operasi logika berdasar instruksi yang
4.      CPU Interconnections adalah sisem koneksi dan bus yang menghubungkan komponen internal CPU.

 Gambar 1. CPU
2.      Bus 

A.    Pengertian BUS
Bus adalah Jalur komunikasi yang dibagi pemakai Suatu set kabel tunggal ,digunakan untuk menghubungkan berbagai subsistem. Karakteristik penting sebuah bus adalah bus merupakan media transmisi yang dapat digunakan bersama. Sejumlah perangkat yang terhubung ke bus dan suatu sinyal yang ditransmisikan oleh salah satu perangkat ini dapat ditermia oleh salah satu perangkat yang terhubung ke bus.Bila 2 buah perangkat melakukan transmisi dalam waktu yang bersamaan, maka sinyal-sinyalnya akan bertumpang tindih dan menjadi rusak. Dengan demikain, hanya sebuah perangkat saja yang akan berhasil melakukan transimi pada suatu saat tertentu. Sistem komputer terdiri dari sejumlah bus yang berlainan yang menyediakan jalan antara dua buah komponen pada bermacam-macam tingkatan hirarki sistem komputer. Suatu Komputer tersusun dari beberapa komponen penting seperti CPU, memori, perangkat Input/Output. setiap computer saling berhubungan membentuk kesatuan fungsi. System bus adalah  sebagai penghubung bagi keseluruhan komponen komputer dalam menjalankan tugasnya. Transfer data antar komponen komputer sangatlah mendominasi kerja suatu computer. Data atau program yang tersimpan dalam memori dapat diakses dan dieksekusi CPU melalui perantara bus, begitu juga kita dapat melihat hasil eksekusi melalui monitor juga menggunakan sistem bus. Pada sistem komputer yang lebih modern, arsitektur komputernya  akan  lebih kompleks, sehingga dapat untuk meningkatkan  performa, digunakan beberapa buah bus. Tiap bus merupakan jalur data antara beberapa device yang berbeda. Dengan cara ini RAM, Prosesor, GPU (VGA AGP) dihubungkan oleh bus utama berkecepatan tinggi yang lebih dikenal dengan nama FSB (Front Side Bus) . Sementara perangkat lain yang lebih lambat dihubungkan oleh bus yang berkecepatan lebih rendah yang terhubung dengan bus lain yang lebih cepat sampai ke bus utama. Untuk komunikasi antar bus ini digunakan sebuah bridge.

B. Karakteristik Bus adalah :
1. Jumlah Interupsi Menentukan banyak perangkat independen yang melakukan I/O.
2. Ukuran bus data eksteral berakibat pada kecepatan operasional I/O.
3. Ukuran bus alamat menentukan banyak memori yang ditunjuk board ekspansi.
4. Kecepatan clock maksimum yang dapat diakomadasi bus berakibat pada kinerja.
C. Struktur Bus
Sebuah bus sistem terdiri dari 50 hingga 100 saluran yang terpisah. Masing-masing saluran ditandai dengan arti dan fungsi khusus. Walaupun terdapat sejumlah rancangan bus yang berlainan, fungsi saluran bus dapat diklasifikasikan menjadi tiga kelompok, yaitu saluran data, saluran alamat, dan saluran kontrol. Selain itu, terdapat pula saluran distribusi daya yang memberikan kebutuhan daya bagi modul yang terhubung.
D. Interkoneksi Bus
1. Bus Data
Jalur data yang dilalu informasi ke dan dari  mikroprosesor data bus. Adalah jalurjalur perpindahan data antar modul dalam sistem komputer. Karena pada suatu saat tertentu masingmasing saluran hanya dapat membawa 1 bit data, maka jumlah saluran menentukan jumlah bit yang dapat ditransfer pada suatu saat. Lebar data bus ini menentukan kinerja sistem secara keseluruhan. Misalnya, bila bus data lebarnya 8 bit, dan setiap instruksi panjangnya 16 bit, maka CPU harus dua kali mengakses modul memori dalam setiap siklus instruksinya. Sifatnya bidirectional, artinya CPU dapat membaca dan menirma data melalui data bus ini. Data bus biasanya terdiri atas 8, 16, 32, atau 64 jalur paralel, jumlah saluran diartikan dengan lebar bus data.
2. Address Bus
Digunakan untuk menandakan lokasi sumber ataupun tujuan pada proses transfer data. Pada jalur ini, CPU akan mengirimkan alamat memori yang akan ditulis atau dibaca. Misalnya, bila CPU akan membaca sebuah word data dari memori, maka CPU akan menaruh alamat word yang dimaksud pada saluran alamat. Lebar bus alamat akan menentukan kapasitas memori maksimum sistem. Address bus biasanya terdiri atas 16, 20, 24, atau 32 jalur paralel. Lebar bus alamat akan menentukan kapasitas memori maksimum sistem. Selain itu, umumnya saluran alamat juga dipakai untuk mengalamati port-port input/output.
3. Control Bus
Digunakan untuk mengontrol penggunaan serta akses ke Data Bus dan Address Bus. Karena data dan saluran alamat dipakai bersama oleh seluruh komponen, maka harus ada alat untuk mengontrol penggunaannya. Sinyal-sinyal kontrol melakukan transmisi baik perintah maupun informasi pewaktuan diantara modul-modul sistem. Sinyal-sinyal pewaktuan menunjukkan validitas data dan informasi alamat. Sinyal-sinyal perintah mespesifikasikan operasi-operasi yang akan dibentuk. Umumnya saluran kontrol meliputi : memory write, memory read, I/O write, I/O read. Terdiri atas 4 sampai 10 jalur paralel.

Gambar 2. Bus Slots

3.      ALU (Arithmatic Logical Unit)
A.    Pengertian ALU
ALU atau yang biasa disebut dengan Arithmetic Logical Unit adalah suatu komponen dalam sistem komputer yang memiliki berfungsi melakukan operasi perhitungan aritmatika dan logika :Contoh operasi aritmatika adalah operasi penjumlahan dan pengurangan, sedangkan contoh operasi logika adalah logika AND dan OR. ALU bekerja besama-sama memori, di mana hasil dari perhitungan di dalamALU di simpan ke dalam memori ALU terdiri dari dua bagian, yaitu unit arithmetika dan unit logika boolean, yang masing – masing memiliki spesifikasi dan tugas tersendiri. Fungsi-fungsi yang didefinisikan pada ALU adalah Add (penjumlahan), Addu (penjumlahan tidak bertanda), Sub (pengurangan), Subu(pengurangan tidak bertanda), and, or,xor, sll (shift left logical), srl (shift right logical), sra (shift right arithmetic), dan lain-lain. Perhitungan dalam ALU menggunakan kode biner, yang merepresentasikan instruksi yang akan dieksekusi (opcode) dan data yang diolah (operand). ALU biasanya menggunakan sistem bilangan biner (two’s complement). ALU mendapat data dari register. Kemudian data tersebut diproses dan hasilnya akan disimpan dalam register tersendiri yaitu ALU.

B.     Fungsi ALU
Fungsi ALU (Arithmetic Logical Unit)  adalah untuk melakukan suatu proses data yang berbentuk angka dan logika, seperti data matematika dan statistika. ALU terdiri dari register-register untuk menyimpan informasi. Tugas utama dari ALU adalah melakukan perhitungan aritmatika (matematika) dan melakukan keputusan dari operasi sesuai dengan instruksi program yaitu operasi logika (logical operation).  Sirkuit yang digunakan oleh ALU ini disebut dengana dder karena Adder  digunakan untuk memproses operasi aritmetika, maka Adder juga sering disebut rangkaian kombinasional aritmetika. Ada 3 jenis Adder yaitu:
·                     Rangkaian Adder  yang hanya menjumlahkan dua bit disebut Half Adder. 
·                     Rangkaian Adder  yang menjumlahkan tiga bit disebut Full Adder.
·                     Rangkaian Adder yang menjumlahkan banyak bit disebut paralel Adder. 

C.    Cara Kerja ALU
            ALU akan bekerja setelah mendapat perintah dari Control Unit yang terletak pada processor.Control Unit akan memberi perintah sesuai dengan komando yang tertulis(terdapat) pada register. Jika isi register memberi perintah untuk melakukan proses penjumlahan, maka PC akan menyuruh ALU untuk melakukan proses penjumlahan. Selain perintah, register pun berisikan operand-operand. Setelah proses ALU selesai, hasil yang terbentuk adalah sebuah register yang berisi hasil atau suatu perintah lainnya. Selain register, ALU pun mengeluarkan suatu flag yang berfungsi untuk memberi tahu kepada kita tentang kondisi suatu processor seperti apakah processor mengalami overflow atau tidak. Perhitungan pada ALU adalah bentuk bilangan integer yang direpresentasikan dengan bilangan biner. Namun, untuk saat ini, ALU dapat mengerjakan bilangan floating point atau bilangan berkoma, tentu saja dipresentasikan dengan bentuk bilangan biner. ALU mendapatkan data (operand, operator, dan instruksi) yang akan disimpan dalam register. Kemudian data tersebut diolah dengan aturan dan sistem tertentu berdasarkan perintah control unit. Setelah proses ALU dikerjakan, output akan disimpan dalam register yang dapat berupa sebuah data atau sebuah instruksi. Selain itu, bentuk output yang dihasilkan oleh ALU berupa flag signal.
Flag signal ini adalah penanda status dari sebuah CPU. Bilangan integer (bulat) tidak dikenal oleh komputer dengan basis 10. Agar komputer mengenal bilangan integer, maka para ahli komputer mengkonversi basis 10 menjadi basis 2. Seperti kita ketahui, bahwa bilangan berbasis 2 hanya terdiri atas 1 dan 0. Angka 1 dan 0 melambangkan bahwa 1 menyatakan adanya arus listrik dan 0 tidak ada arus listrik. Namun, untuk bilangan negatif, computer tidak mengenal simbol (-). Komputer hanya mengenal simbol 1 dan 0. Untuk mengenali bilangan negatif, maka digunakan suatu metode yang disebut dengan Sign Magnitude Representation. Metode ini menggunakan simbol 1 pada bagian paling kiri (most significant) bit. Jika terdapat angka 18 = (00010010)b, maka -18 adalah (10010010)b. Akan tetapi, penggunaan sign-magnitude memiliki 2 kelemahan. Yang pertama adalah terdaptnya -0 pada sign magnitude[0=(00000000)b; -0=(10000000)b]. Seperti kita ketahui, angka 0 tidak memiliki nilai negatif sehingga secara logika, sign-magnitude tidak dapat melakukan perhitungan aritmatika secara matematis. Yang kedua adalah, tidak adanya alat atau software satupun yang dapat mendeteksi suatu bit bernilai satu atau nol karena sangat sulit untuk membuat alat seperti itu. Oleh karena itu, penggunaan sign magnitude pada bilangan negatif tidak digunakan, akan tetapi diganti dengan metode 2′s complement. Metode 2′s complement adalah metode yang digunakan untuk merepresentasikan bilangan negatif pada komputer. 

Cara yang digunakan adalah dengan nilai terbesar dari biner dikurangin dengan nilai yang ingin dicari negatifnya. Contohnya ketika ingin mencari nilai -18, maka lakukan cara berikut:
1. ubah angka 18 menjadi biner (00010010)b
2. karena biner tersebut terdiri dari 8 bit, maka nilai maksimumnya adalah 11111111
3. kurangkan nilai maksimum dengan biner 18 -> 11111111 – 00010010 = 11101101
4. kemudian, dengan sentuhan terakhir, kita tambahkan satu -> 11101101 + 00000001 = 11101110
Dengan metode 2′s complement, kedua masalah pada sign magnitude dapat diselesaikan dan komputer dapat menjalankan. Namun, pada 2′s complement, nilai -128 pada biner 8 bit tidak ditemukan karena akan terjadi irelevansi.

Gambar 3. Cara kerja ALU


Daftar pustaka :

Arsitektur dan Set Instruksi


Arsitektur dan Set Instruksi

Set Instruksi (bahasa Inggris: Instruction Set, atau Instruction Set Architecture (ISA)) didefinisikan sebagai suatu aspek dalam arsitektur komputer yang dapat dilihat oleh para pemrogram. Secara umum, ISA ini mencakup jenis data yang didukung, jenis instruksi yang dipakai, jenis register, mode pengalamatan, arsitektur memori, penanganan interupsi, eksepsi, dan operasi I/O eksternalnya (jika ada).
ISA merupakan sebuah spesifikasi dari kumpulan semua kode-kode biner (opcode) yang diimplementasikan dalam bentuk aslinya (native form) dalam sebuah desain prosesor tertentu. Kumpulan opcode tersebut, umumnya disebut sebagai bahasa mesin (machine language) untuk ISA yang bersangkutan. ISA yang populer digunakan adalah set instruksi untuk chip Intel x86, IA-64, IBM PowerPC, Motorola 68000, Sun SPARC, DEC Alpha, dan lain-lain.
A.    Karakteristik dan Fungsi Set Instruksi
Operasi dari CPU ditentukan oleh instruksiinstruksi yang dilaksanakan atau dijalankannya. Instruksi ini sering disebut sebagai instruksi mesin (mechine instructions) atau instruksi komputer (computer instructions). Kumpulan dari instruksi-instruksi yang  berbeda yang dapat dijalankan oleh CPU  disebut set Instruksi (Instruction Set).
B.     Elemen Elemen Set Instruksi
§  Operation Code (opcode) : menentukan operasi yang akan dilaksanakan.
§  Source Operand Reference : merupakan input bagi operasi yang akan dilaksanakan.
§  Result Operand Reference : merupakan hasil dari operasi yang dilaksanakan.
§  Next Instruction Reference : memberitahu CPU untuk mengambil instruksi berikutnya setelah instruksi yang dijalankan selesai.
C.    Jenis Jenis Instruksi
§  Data Processing / Pengolahan Data : instruksi-instruksi aritmetika dan logika. Instruksi aritmetika memiliki kemampuan untuk mengolahdata numeric, sedangkan instruksi logika beroperasi pada bit-bit word sebagai bit bukan sebagai bilangan. Operasi-operasi tersebut dilakukan terutama untuk data di register CPU.
§  Data Storage / Penyimpanan Data : instruksi-instruksi memori. Instruksi-instruksi memori diperlukan untuk memindah data yang terdapat di memori dan register.
§  Data Movement / Perpindahan Data : instruksi I/O. Instruksi-instruksi I/O diperlukan untuk memindahkan program dan data ke dalam memori dan mengembalikan hasil komputansi kepada pengguna.
§  Control / Kontrol : instruksi pemeriksaan dan percabangan. Instruksi-instruksi kontrol digunakan untuk memeriksa nilai data, status komputansi dan mencabangkan ke set instruksi lain.
D.    Teknik Pengalamatan
1. Immediate Addressing (Pengalamatan Segera)
§  Pengalamatan yang paling sederhana.
§  Operand benar-benar ada dalam instruksi atau bagian dari intsruksi
§  Operand sama dengan field alamat
§  Umumnya bilangan akan disimpan dalam bentuk complement dua
§  Bit paling kiri sebagai bit tanda
§  Ketika operand dimuatkan ke dalam register data, bit tanda digeser ke kiri hingga maksimum word data
Keuntungan :
Tidak adanya referensi memori selain dari instruksi yang diperlukan untuk memperoleh operand
Menghemat siklus instruksi sehingga proses keseluruhanakan akan cepat
Kekurangan :
Ukuran bilangan dibatasi oleh ukuran field
Contoh :
ADD 7 ; tambahkan 7 pada akumulator
2. Direct Addressing (Pengalamatan Langsung)
§  Teknik ini banyak digunakan pada komputer lama dan komputer kecil
§  Hanya memerlukan sebuah referensi memori dan tidak memerlukan kalkulus khusus
Kelebihan :
Field alamat berisi efektif address sebuah operand
Kekurangan :
Keterbatasan field alamat karena panjang field alamat biasanya lebih kecil dibandingkan panjang word
Contoh :
ADD A ; tambahkan isi pada lokasi alamat A ke akumulator
3. Indirect Addressing (Pengalamatan tak langsung)
Merupakan mode pengalamatan tak langsung
§  Field alamat mengacu pada alamat word di alamat memori, yang pada gilirannya akan berisi alamat operand yang panjang
Kelebihan :
Ruang bagi alamat menjadi besar sehingga semakin banyak alamat yang dapat referensi
Kekurangan :
Diperlukan referensi memori ganda dalam satu fetch sehingga memperlambat proses operasi
Contoh :
ADD (A) ; tambahkan isi memori yang ditunjuk oleh isi alamat A ke akumulator
4. Register addressing (Pengalamatan Register)
§  Metode pengalamatan register mirip dengan mode pengalamatan langsung
§  Perbedaanya terletak pada field alamat yang mengacu pada register, bukan pada memori utama
§  Field yang mereferensi register memiliki panjang 3 atau 4 bit, sehingga dapat mereferensi 8 atau 16 register general purpose
Keuntungan :
Diperlukan field alamat berukuran kecil dalam instruksi dan tidak diperlukan referensi memori
Akses ke register lebih cepat daripada akses ke memori, sehingga proses eksekusi akan lebih cepatKerugian :
Ruang alamat menjadi terbatas
5. Register indirect addressing (Pengalamatan tak-langsung register)– Metode pengalamatan register tidak langsung mirip dengan mode pengalamatan tidak langsung
Perbedaannya adalah field alamat mengacu pada alamat register
§  Letak operand berada pada memori yang dituju oleh isi register
§  Keuntungan dan keterbatasan pengalamatan register tidak langsung pada dasarnya sama dengan pengalamatan tidak langsung
§  Keterbatasan field alamat diatasi dengan pengaksesan memori yang tidak langsung sehingga alamat yang dapat direferensi makin banyak
§  Dalam satu siklus pengambilan dan penyimpanan, mode pengalamatan register tidak langsung hanya menggunakan satu referensi memori utama sehingga lebih cepat daripada mode pengalamatan tidak langsung
6. Displacement addressing
§  Menggabungkan kemampuan pengalamatan langsung dan pengalamatan register tidak langsung
§  Mode ini mensyaratkan instruksi memiliki dua buah field alamat, sedikitnya sebuah field yang eksplisit
§  Operand berada pada alamat A ditambahkan isi register
Tiga model displacement
§  Relative addressing : register yang direferensi secara implisit adalah Program Counter (PC)
§  Alamat efektif didapatkan dari alamat instruksi saat itu ditambahkan ke field alamat
§  Memanfaatkan konsep lokalitas memori untuk menyediakan operand-operand berikutnya
Base register addressing : register yang direferensi berisi sebuah alamat memori dan field alamat berisi perpindahan dari alamat itu
§  Referensi register dapat eksplisit maupun implisit
§  Memanfaatkan konsep lokalitas memori
Indexing  : field alamat mereferensi alamat memori utama, dan register yang direferensikan berisi pemindahan positif dari alamat tersebut
§  Merupakan kebalikan dari mode base register
§  Field alamat dianggap sebagai alamat memori dalam indexing
§  Manfaat penting dari indexing adalah untuk eksekusi program-pprogram iteratif
Contoh :
Field eksplisit bernilai A dan field imlisit mengarah pada register
7. Stack addressing
§  Stack adalah array lokasi yang linier = pushdown list = last-in-firs-out
§  Stack merupakan blok lokasi yang terbaik
§  Btir ditambahkan ke puncak stack sehingga setiap blok akan terisi secara parsial
§  Yang berkaitan dengan stack adalah pointer yang nilainya merupakan alamat bagian paling atas stack
§  Dua elemen teratas stack dapat berada di dalam register CPU, yang dalam hal ini stack pointer mereferensi ke elemen ketiga stack
§  Stack pointer tetap berada dalam register
§  Dengan demikian, referensi-referensi ke lokasi stack di dalam memori pada dasarnya merupakan pengalamatan register tidak langsung
E.     Format Set Instruksi 
Suatu instruksi terdiri dari beberapa field yang sesuai dengan elemen dalam instruksi tersebut. Layout dari suatu instruksi sering disebut sebagai Format Instruksi (Instruction Format). Jenis-Jenis Operand antara lain :
§  Addresses (akan dibahas pada addressing modes)
§  Numbers : – Integer or fixed point – Floating point – Decimal (BCD)
§  Characters : – ASCII – EBCDIC
§  Logical Data : Bila data berbentuk binary: 0 dan 1
1.      Transfer Data 
  a) Menetapkan lokasi operand sumber dan operand tujuan.
 b) Lokasi-lokasi tersebut dapat berupa memori, register atau bagian paling atas daripada stack.’
 c) Menetapkan panjang data yang dipindahkan.
 d) Menetapkan mode pengalamatan.
 e) Tindakan CPU untuk melakukan Transfer Data adalah :
 f) Operasi set instruksi untuk Transfer Data :
§  MOVE : memindahkan word atau blok dari sumber ke tujuan.
§  STORE : memindahkan word dari prosesor ke memori.
§  LOAD : memindahkan word dari memori ke prosesor.
§  EXCHANGE : menukar isi sumber ke tujuan.
§  CLEAR / RESET : memindahkan word 0 ke tujuan.
§  SET : memindahkan word 1 ke tujuan.
§  PUSH : memindahkan word dari sumber ke bagian paling atas stack.
§  POP : memindahkan word dari bagian paling atas sumber

2.      Aritmatika dan Logika
 a) Tindakan CPU untuk melakukan operasi Aritmatika Dan Logika :
ü  Transfer data sebelum atau sesudah.
ü  Melakukan fungsi dalam ALU.
ü  Menset kode-kode kondisi dan flag.
  b) Operasi set instruksi untuk Aritmatika :
ü  ADD : penjumlahan
ü  SUBTRACT : pengurangan
ü  MULTIPLY : perkalian
ü  DIVIDE : pembagian
   c) Operasi set instruksi untuk operasi Logika :
ü  AND, OR, NOT, EXOR
ü  COMPARE : melakukan perbandingan logika
ü  TEST : menguji kondisi tertentu
ü  SHIFT : operand menggeser ke kiri atau kanan menyebabkan konstanta pada ujung bit
ü  ROTATE : operand menggeser ke kiri atau ke kanan dengan ujung yang terjalin

3.      Konversi
          a) Tindakan CPU sama dengan Aritmatika dan Logika.
          b) Instruksi yang mengubah format instruksi yang beroperasi terhadap format data.
          c) Misalnya pengubahan bilangan desimal menjadi bilangan biner.
          d) Operasi set instruksi untuk Konversi :
ü  TRANSLATE : menterjemahkan nilai-nilai dalam suatu bagian memori berdasrkan tabel korespodensi.
ü  CONVERT : mengkonversi isi suatu word dari suatu bentuk ke bentuk lainnya.

4.      Input / Ouput
           a) Tindakan CPU untuk melakukan INPUT /OUTPUT :
ü  Apabila memory mapped I/O maka menentukan alamat memory mapped.
ü  Mengawali perintah ke modul I/O
ü  b) Operasi set instruksi Input / Ouput :
ü  INPUT : memindahkan data dari pernagkat I/O tertentu ke tujuan.
ü  OUTPUT : memindahkan data dari sumber tertentu ke perangkat I/O.
ü  START I/O : memindahkan instruksi ke prosesor I/O untuk mengawali operasi I/O.
ü  TEST I/O : memindahkan informasi dari sistem I/O ke tujuan TRANSFER CONTROL.
5.      Transfer Control
           a) Tindakan CPU untuk transfer control :
ü  Mengupdate program counter untuk subrutin , call / return.
           b) Operasi set instruksi untuk transfer control :
ü  JUMP (cabang) : pemindahan tidak bersyarat dan memuat PC dengan alamat tertentu.
ü  JUMP BERSYARAT : menguji persyaratan tertentu dan memuat PC dengan alamat tertentu atau tidak melakukan apa tergantung dari persyaratan.
ü  JUMP SUBRUTIN : melompat ke alamat tertentu.
ü  RETURN : mengganti isi PC dan register lainnya yang berasal dari lokasi tertentu.
ü  EXECUTE : mengambil operand dari lokasi tertentu dan mengeksekusi sebagai instruksi.
ü  SKIP : menambah PC sehingga melompati instruksi berikutnya.
ü  SKIP BERSYARAT : melompat atau tidak melakukan apa-apa berdasarkan pada persyaratan.
ü  HALT : menghentikan eksekusi program.
ü  WAIT (HOLD) : melanjutkan eksekusi pada saat persyaratan dipenuhi.
ü  NO OPERATION : tidak ada operasi yang dilakukan.

6.      Control System 
ü  Hanya dapat dieksekusi ketika prosesor berada dalam keadaan khusus tertentu atau sedang mengeksekusi suatu program yang berada dalam area khusus, biasanya digunakan dalam sistem operasi.
ü  Contoh : membaca atau mengubah register kontrol.

daftar pustaka :
https://mfahrulrozi14.wordpress.com/2017/11/06/arsitektur-set-instruksi-dan-teknik-pengalamatan/
https://mazzeko.wordpress.com/2014/11/29/arsitektur-dan-desain-set-instruksi/